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Some ecommerce proposals at the World Trade Organization would restrict the ability of regulators and
experts to check algorithms (and source code) for bias or discrimination.! This note outlines some of the
reasons why algorithmic transparency is important.

Algorithmic systems are increasingly at the heart of the digital economy, transforming diverse data sets
into actionable recommendations; providing increasing levels of autonomy to cyber-physical systems,
such as autonomous vehicles and the Internet of Things; and enabling tailor-made solutions for anything
from healthcare to insurance and public services. At the same time, there is growing evidence that,
opaque complex algorithmic systems can exhibit unintended and/or unjustified biases or errors with
potentially significant consequences. The likelihood of such undesired outcomes is greatly increased
when systems are deployed under novel operating conditions, such as in new environments or social-
cultural contexts.

Algorithms “are inescapably value-laden. Operational parameters are specified by developers and
configured by users with desired outcomes in mind that privilege some values and interests over others”
[Mittelstadt et al. 2016]. Human values are (often unconsciously) embedded into algorithms during the
process of design through the decisions of what categories and data to include and exclude. These values
are highly subjective — what can appear ‘neutral’ or ‘rational’ to one person can seem unfair or
discriminatory to another.

Due to the strongly interconnected and integrated nature of technical systems employed in the digital
economy, clear accountability for bias and errors in products and services will require increased levels of
auditability and transparency, which currently are often lacking.

When linked with pervasive and automated data collection (e.g. Internet of Things), where people
implicitly provide the data that is used by the algorithmic system simply by being in the presence of the
device, it can become difficult or impossible for individuals to identify which data were used to reach
particular decision outcomes, and thus impossible to correct faulty data or assumptions.

Accordingly, there is now a growing demand for fairness, accountability, and transparency from
algorithmic systems, and a growing research community (e.g. FAT* [www.fatml.org]) which is
investigating how to deliver answers to these demands. When considering algorithmic fairness, it is
important to remember that potential bias in training/validation data sets isn’t the only source of
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Arkansas algorithmic Medicaid assessment instrument

Upon introduced of the algorithmic assessment instrument in 2016, many people with cerebral palsy had their care
dramatically reduced — they sued the state resulting in a court case.

Detailed examination of the assessment algorithm and data in court revealed:

The algorithm relied on 60 answer scores to questions about descriptions, symptoms and ailments. A small number of
variables could matter enormously: a difference between scoring a three instead of a four on a handful of items meant a
cut of dozens of care hours a month.

One variable was “foot problems”. Some assessors wrote that the person being assessed didn’t have any “foot problems”
— when they were amputees and didn’t have feet.

The third-party software vendor implementing the system was found to have mistakenly used a version of the algorithm
that didn’t account for diabetes issues.

Cerebral palsy, wasn’t properly coded in the algorithm, causing incorrect calculations for hundreds of people, mostly
lowering their hours.

https://www.theverge.com/2018/3/21/17144260/healthcare-medicaid-algorithm-arkansas-cerebral-palsy

possible bias. It can also be introduced through inappropriate data handling, inappropriate model
selection, or incorrect algorithm design. Bias can also affect usage data.

Algorithmic systems should therefore be transparent to scrutiny whenever they play a role in any
situation where a human would be legally required to provide an explanation for their decision. This
approach prevents otherwise legally accountable decision-makers from “hiding” behind Algorithmic
Decision Systems. While imperfect in its implementation, this was the intent behind Article 22 of the
GDPR (Right to an explanation).

Depending on which aspect of an algorithmic system is in question, the meaning of “transparency” can
be different:

1. The transparency of the systems’ algorithms can refer to a third party code review, analysis of how
the algoriths works, inspection of internal and external bug reports, or assurance the software
development processes are sound.

2. The transparency of the data used by the algorithmic system -- in particular by machine learning
and deep learning algorithms -- can refer to the raw data, to the data’s sources, to how the data
were preprocessed, to the methods by which it was verified as unbiased and representative
(including looking for features that are proxies for information about protected classes, like race,
that legally prohibited from being used), or to the processes by which the data are updated and the
system recalibrated on them.

3. Algorithmic systems can also be transparent about their goals. When a system has multiple goals,
this would mean being transparent about their relative priorities. For example, the artificial
intelligence (Al) driving autonomous vehicles (AVs) might be aimed at reducing traffic fatalities,
lowering the AVs’ environmental impact, reducing serious injuries, shortening transit times, and/or
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avoiding property damage. A manufacturer could be required to be transparent about those goals
and their priority.

4. Manufacturers or operators could be required to be transparent about the outcomes of the
deployment of their algorithmic systems, including the internal states of the system (how worn are
the brakes of an AV? how much electricity used?), the effects on external systems (how many
accidents, or times it has caused another AV to swerve?), and computer-based interactions with
other algorithmic systems (what communications with other AVs, what data fed into traffic
monitoring systems?).

5. Manufacturers or operators may be required to be transparent about their overall compliance with
whatever transparency requirements have been imposed upon them. In many instances, there may
be a requirement that these compliance reports are backed by data that is inspectable by
regulators or the general public.

Note that “transparency” has different meanings in this categorization. It can mean: access upon
request to the public or authorized people; public posting of information; direct inspection of internal
processes; delivery of complete subsystems and their data for testing by authorized people, with the
results reported to the public or to regulatory bodies; access to computer scientists and managers to
explain algorithmic or operational processes.
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Algorithmic systems for decision making require clear mechanisms of accountability due to their potential
to bring about consequences that are detrimental on a number of levels:

e detrimental to the individual: individual citizens might become the recipients of inaccurate
decisions or be treated more harshly in comparison to others. Where this relates to decisions
over, for instance, prison sentences?, this can have very serious consequences. Individuals might
also receive false/misleading/skewed information e.g. as a result of online searches and this can
alter their perceptions or behaviours, perhaps including their voting behaviours®. The collection
and collation of information necessitated by some algorithmic processes might also be considered
a breach of privacy.

e detrimental to groups: where algorithmic processes appear to produce different results for
different (demographic) groups, this often places some of those groups at a disadvantage. For
instance, the case studies below suggest that blacks might be more vulnerable than whites to
longer prison sentences, lack of access to facial recognition technologies, stereotyping in online
advertisements, and stereotyped/prejudicial representations in online searches. This can have
further detrimental consequences for those groups if the outcomes of those processes reinforce
wider societal prejudices.

e detrimental to society: entire societies are disadvantaged if the outcomes of algorithmic processes
cannot be relied on to be accurate and/or neutral. Incorrect decisions can have societal effects —
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for instance the wrongful arrest of individuals based on facial recognition technologies places a
society at risk if actual offenders are overlooked, and stereotyped online content risks reinforcing
prejudices. Furthermore, these outcomes may lead to loss of trust amongst the population as well
as concerns that companies utilising these systems are allowed too much power.

In order to guard against these potential detrimental consequences, it is important to be able to inspect
an algorithmic system’s data and algorithms to:

Check for bias in the data and algorithms that affects the fairness of the system.
Check that the system is drawing inferences from relevant and representative data.
e See if we can learn anything from the machine’s way of connecting and weighting the data --
perhaps there’s a meaningful correlation we had not been aware of.
e Look for, and fix, bugs.
Guard against malicious/adversarial data injection®.

This requires the hierarchy of goals and outcomes to be transparent so:

e They can be debated and possibly regulated.
® Regulators and the public can assess how well an algorithmic system has performed relative to
its goals and compared to the pre-algorithmic systems it may be replacing or supplementing.

Governance of Algorithmic Decision-Making systems

The development of governance frameworks for Algorithmic Decision Making is still in its infancy. Both
the development of industry standards and government regulations have not yet matured to a level that
can provide clarity about the kind of algorithm transparency that will be necessary to satisfy future
product/service quality assurance requirements.

International industry standards development

In 2017, the Institute of Electrical and Electronics Engineers (IEEE.the world’s largest technical
professional association) was the first of the international standards setting bodies to launch a
programme for developing standards specifically related to the ethics and social impact of algorithmic
decision making. As part of the IEEE Global Initiative for Ethics of Autonomous and Intelligent Systems,
the P7000-series of standards was initiated which currently includes 13 standards development working
groups. The standards that are currently in development include:

e |EEE P7000: Model Process for Addressing Ethical Concerns During System Design

IEEE P7001: Transparency of Autonomous Systems

IEEE P7003: Algorithmic Bias Considerations

e |EEE P7009: Standard for Fail-Safe Design of Autonomous and Semi-Autonomous Systems

The earliest of these is expected to reach completion in the second half of 2019.
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At the start of 2018, ISO/IEC initiated the ISO/IEC JTC/1 SC42 subcommittee to develop standards
related to Artificial Intelligence. This standards development effort is currently still at the stage of study
groups that are investigating the need and feasibility of developing standards for specific Al related
issues (e.g. trustworthiness). Completed ISO/IEC JTC/1 SC42 standards ae unlikely to appear before
2022.

Government regulation

Most national governments, as well as the European Commission, are still engaged in exploratory
inquires to try to understand what kind of legislation might be required in order to protect their citizens
against detrimental consequences of bad algorithmic decision-making. For example:

e Inthe UK, the a new government Center for Data Ethics and Innovation has been establish to
lead policy development on Al. The public consultation seeking views on its work and activities
closed on 5 September 2018.

e On 14 June 2018, the European Commission established a High-Level Expert group on Artificial
Intelligence, supported by a European Al Alliance, to help the European Commission implement
its European strategy on Al, which aims to establish “Al ethics guidelines” and “Guidance on the
interpretation of the Product Liability directive” in 2019.

e OnlJune 5" 2018, the Personal Data Protection Commission of Singapore published a
“Discussion paper on Al and Personal Data — Fostering Responsible Development and Adoption
of Al” as a first step towards establishing its regulatory framework for Al.



Examples of public scrutiny of automated decisions

[https://www.omidyar.com/insights/public-scrutiny-automated-decisions-early-lessons-and-emerging-methods]
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